# Liquid-Liquid Equilibria for the Ternary Systems Sulfolane + Octane + Benzene, Sulfolane + Octane + Toluene and Sulfolane + Octane + *p*-Xylene

## Sungjin Lee and Hwayong Kim\*

Department of Chemical Engineering, Seoul National University, 56-1 Shinlim-dong, Kwanak-ku, Seoul 151-742, Korea

Liquid-liquid equilibrium data for the systems sulfolane + octane + benzene, sulfolane + octane + toluene and sulfolane + octane + p-xylene were determined at 298.15, 308.15, and 318.15 K. Tie line data were satisfactorily correlated by the Othmer and Tobias method. The experimental data were compared with the values calculated by the UNIQUAC and NRTL models. Good quantitative agreement was obtained with these models. However, the calculated values based on the NRTL model were found to be better than those based on the UNIQUAC model.

#### Introduction

Although a large volume of liquid-liquid equilibrium (LLE) data exists in the literature, it has not received much attention in terms of theoretical interpretation until the mid 1970s. Much interest has been generated in this area since Sørensen (1, 2) made a systematic study of the published LLE data and correlated these data using the UNIQUAC and NRTL models.

Sulfolane is widely used as a solvent for the extraction of aromatic hydrocarbons. Ternary phase equilibrium data are essential for the proper understanding of the solvent extraction process. Quantitative phase equilibrium data for the systems containing sulfolane are scarce. To our knowledge, phase equilibrium data on sulfolane + octane + aromatic compounds (benzene, toluene, and p-xylene) have not been published in the literature.

Therefore, the purpose of this study was to generate the data for these systems to aid the correlation and prediction of liquid-liquid equilibria. LLE data for these ternary systems were measured at 298.15, 308.15, and 318.15 K, and correlated by using the UNIQUAC and NRTL models.

#### **Experimental Section**

**Chemicals.** Sulfolane was purchased from Fluka Chemie AG with a minimum purity of 99.5%, and octane from Janssen Chemica with a minimum purity of 99.0 %. Toluene and benzene were supplied by Associate of E. Merck, Germany, with 99.97% and 99.94% purities, respectively. The minimum purity of *p*-xylene from Janssen Chemica was 99.0%. All of these chemicals were used directly without any purification.

**Procedure.** Liquid-liquid equilibria for the ternary systems were measured by an apparatus similar to that described elsewhere (3, 4). The tie-line measurements were made in a 150 cm<sup>3</sup> cylindrical glass vessel. The vessel was immersed in a thermostat controlled at the desired temperature ( $\pm 0.1$  K). The pure components were added, and the mixture was stirred for at least 1 h with a magnetic stirrer. The two-phase mixture was allowed to settle for at least 2 h. Samples of both phases were carefully withdrawn with syringes and analyzed by gas-liquid chromatography with the aid of a flame ionization detector. A good separation of the samples was obtained on a 6 ft  $\times \frac{1}{8}$  in. column, packed with Chromosorb WHP 100/120

Table 1. Experimental LLE Data for the SystemSulfolane (1) + Octane (2) + Benzene (3)

| waatoo addd di' to | bot      | tom phase | e (1)                  | top phase (2) |          |          |  |  |
|--------------------|----------|-----------|------------------------|---------------|----------|----------|--|--|
| T/K                | $x_{11}$ | $x_{21}$  | <i>x</i> <sub>31</sub> | $x_{12}$      | $x_{22}$ | $x_{32}$ |  |  |
| 298.15             | 0.9237   | 0.0064    | 0.0699                 | 0.0045        | 0.9119   | 0.0836   |  |  |
|                    | 0.8093   | 0.0095    | 0.1812                 | 0.0104        | 0.7941   | 0.1955   |  |  |
|                    | 0.7541   | 0.0114    | 0.2345                 | 0.0104        | 0.7435   | 0.2461   |  |  |
|                    | 0.7267   | 0.0113    | 0.2620                 | 0.0117        | 0.7041   | 0.2842   |  |  |
|                    | 0.6167   | 0.0174    | 0.3659                 | 0.0155        | 0.6093   | 0.3752   |  |  |
|                    | 0.5689   | 0.0201    | 0.4110                 | 0.0147        | 0.5702   | 0.4151   |  |  |
|                    | 0.4869   | 0.0337    | 0.4794                 | 0.0203        | 0.5120   | 0.4677   |  |  |
| 308.15             | 0.9738   | 0.0054    | 0.0208                 | 0.0074        | 0.9458   | 0.0468   |  |  |
|                    | 0.8440   | 0.0090    | 0.1470                 | 0.0134        | 0.8334   | 0.1532   |  |  |
|                    | 0.7400   | 0.0098    | 0.2502                 | 0.0122        | 0.6580   | 0.3298   |  |  |
|                    | 0.6968   | 0.0122    | 0.2910                 | 0.0136        | 0.5859   | 0.4005   |  |  |
|                    | 0.6236   | 0.0177    | 0.3587                 | 0.0225        | 0.4950   | 0.4825   |  |  |
|                    | 0.6033   | 0.0187    | 0.3780                 | 0.0235        | 0.4887   | 0.4878   |  |  |
|                    | 0.5323   | 0.0243    | 0.4434                 | 0.0301        | 0.4341   | 0.5358   |  |  |
| 318.15             | 0.9728   | 0.0054    | 0.0218                 | 0.0014        | 0.9716   | 0.0270   |  |  |
|                    | 0.9148   | 0.0065    | 0.0787                 | 0.0169        | 0.8674   | 0.1157   |  |  |
|                    | 0.8642   | 0.0073    | 0.1285                 | 0.0176        | 0.7974   | 0.1850   |  |  |
|                    | 0.7159   | 0.0132    | 0.2709                 | 0.0179        | 0.6099   | 0.3722   |  |  |
|                    | 0.6934   | 0.0152    | 0.2914                 | 0.0229        | 0.5497   | 0.4274   |  |  |
|                    | 0.6617   | 0.0184    | 0.3199                 | 0.0231        | 0.5139   | 0.4630   |  |  |
|                    | 0.6155   | 0.0231    | 0.3614                 | 0.0257        | 0.4955   | 0.4788   |  |  |

coated with OV-101. The injector and detector temperatures were maintained at 573 K. The column temperature was programmed for an initial temperature of 333 K and a final temperature of 443 K. The heating rate was 20 K·min<sup>-1</sup>, and the flow rate of nitrogen carrier gas was 25 cm<sup>3</sup>min<sup>-1</sup>. Mass fraction measurements were reproducible to within  $\pm 0.003$ .

## **Results and Discussion**

**Experimental Results.** The results obtained in this work for the systems, sulfolane (1) + octane (2) + benzene (3), sulfolane (1) + octane (2) + toluene (3), and sulfolane (1) + octane (2) + p-xylene (3), are presented on Tables 1,2, and 3, respectively. Concentrations of components j (j = 1, 2, 3) in phase L (L = 1, bottom phase; L = 2, top phase) are given in mole fraction,  $x_{jL}$ . The effect of temperature on the equilibrium for the systems is shown in Figures 1–3. As expected, the size of the two-phase region decreases with an increase in temperature.

500 Journal of Chemical and Engineering Data, Vol. 40, No. 2, 1995

| Table 2.  | Experimental  | LLE ]     | Data  | for | the | System |
|-----------|---------------|-----------|-------|-----|-----|--------|
| Sulfolane | e(1) + Octane | (2) + (2) | Tolue | ene | (3) |        |

|                | boti                   | tom phase | e (1)    | to       | top phase (2) |                 |  |  |
|----------------|------------------------|-----------|----------|----------|---------------|-----------------|--|--|
| $T/\mathbf{K}$ | <i>x</i> <sub>11</sub> | $x_{21}$  | $x_{31}$ | $x_{12}$ | $x_{22}$      | x <sub>32</sub> |  |  |
| 298.15         | 0.9823                 | 0.0055    | 0.0122   | 0.0017   | 0.9619        | 0.0364          |  |  |
|                | 0.9599                 | 0.0070    | 0.0331   | 0.0100   | 0.8947        | 0.0953          |  |  |
|                | 0.9403                 | 0.0070    | 0.0527   | 0.0154   | 0.8352        | 0.1494          |  |  |
|                | 0.8782                 | 0.0090    | 0.1128   | 0.0176   | 0.7000        | 0.2824          |  |  |
|                | 0.8597                 | 0.0092    | 0.1311   | 0.0173   | 0.6609        | 0.3218          |  |  |
|                | 0.8168                 | 0.0106    | 0.1726   | 0.0245   | 0.5580        | 0.4175          |  |  |
|                | 0.8008                 | 0.0109    | 0.1883   | 0.0259   | 0.5233        | 0.4508          |  |  |
| 308.15         | 0.9833                 | 0.0056    | 0.0111   | 0.0053   | 0.9562        | 0.0385          |  |  |
|                | 0.9650                 | 0.0063    | 0.0287   | 0.0090   | 0.8998        | 0.0912          |  |  |
|                | 0.9438                 | 0.0071    | 0.0491   | 0.0134   | 0.8408        | 0.1458          |  |  |
|                | 0.8985                 | 0.0082    | 0.0933   | 0.0184   | 0.7450        | 0.2366          |  |  |
|                | 0.8858                 | 0.0094    | 0.1048   | 0.0183   | 0.7040        | 0.2777          |  |  |
|                | 0.8728                 | 0.0086    | 0.1186   | 0.0190   | 0.6677        | 0.3133          |  |  |
|                | 0.8434                 | 0.0108    | 0.1458   | 0.0217   | 0.6312        | 0.3471          |  |  |
|                | 0.8152                 | 0.0118    | 0.1730   | 0.0280   | 0.5637        | 0.4083          |  |  |
|                | 0.7764                 | 0.0140    | 0.2096   | 0.0346   | 0.5254        | 0.4400          |  |  |
| 318.15         | 0.9799                 | 0.0082    | 0.0119   | 0.0066   | 0.9572        | 0.0362          |  |  |
|                | 0.9545                 | 0.0095    | 0.0360   | 0.0147   | 0.8869        | 0.0984          |  |  |
|                | 0.9383                 | 0.0097    | 0.0520   | 0.0194   | 0.8295        | 0.1511          |  |  |
|                | 0.8858                 | 0.0124    | 0.1018   | 0.0186   | 0.7279        | 0.2535          |  |  |
|                | 0.8486                 | 0.0131    | 0.1383   | 0.0304   | 0.6387        | 0.3309          |  |  |
|                | 0.8299                 | 0.0140    | 0.1561   | 0.0327   | 0.5968        | 0.3705          |  |  |
|                | 0.8139                 | 0.0141    | 0.1720   | 0.0354   | 0.5578        | 0.4068          |  |  |
|                | 0.7667                 | 0.0169    | 0.2164   | 0.0383   | 0.5022        | 0.4595          |  |  |

Table 3. Experimental LLE Data for the System Sulfolane (1) + Octane (2) + p-Xylene (3)

|             | bot      | tom phase | e(1)     | top phase (2) |          |                   |  |
|-------------|----------|-----------|----------|---------------|----------|-------------------|--|
| <i>T</i> /K | $x_{11}$ | $x_{21}$  | $x_{31}$ | $x_{12}$      | $x_{22}$ | $\mathbf{x}_{32}$ |  |
| 298.15      | 0.9448   | 0.0079    | 0.0473   | 0.0118        | 0.7811   | 0.2071            |  |
|             | 0.8857   | 0.0083    | 0.1060   | 0.0134        | 0.6251   | 0.3615            |  |
|             | 0.8490   | 0.0072    | 0.1438   | 0.0247        | 0.5551   | 0.4202            |  |
|             | 0.8357   | 0.0112    | 0.1531   | 0.0345        | 0.5237   | 0.4418            |  |
|             | 0.8183   | 0.0113    | 0.1704   | 0.0332        | 0.4852   | 0.4816            |  |
|             | 0.8027   | 0.0117    | 0.1856   | 0.0348        | 0.4642   | 0.5010            |  |
|             | 0.7877   | 0.0136    | 0.1987   | 0.0475        | 0.4289   | 0.5236            |  |
| 308.15      | 0.9802   | 0.0068    | 0.0130   | 0.0046        | 0.9419   | 0.0535            |  |
|             | 0.9513   | 0.0094    | 0.0393   | 0.0050        | 0.8519   | 0.1431            |  |
|             | 0.9291   | 0.0102    | 0.0607   | 0.0127        | 0.7800   | 0.2073            |  |
|             | 0.9081   | 0.0112    | 0.0807   | 0.0157        | 0.7205   | 0.2638            |  |
|             | 0.8889   | 0.0141    | 0.0970   | 0.0162        | 0.6672   | 0.3166            |  |
|             | 0.8683   | 0.0157    | 0.1160   | 0.0253        | 0.6248   | 0.3499            |  |
|             | 0.8515   | 0.0159    | 0.1326   | 0.0302        | 0.5837   | 0.3861            |  |
|             | 0.8316   | 0.0162    | 0.1522   | 0.0304        | 0.5515   | 0.4181            |  |
|             | 0.7962   | 0.0167    | 0.1871   | 0.0437        | 0.4803   | 0.4760            |  |
|             | 0.7827   | 0.0179    | 0.1994   | 0.0426        | 0.4535   | 0.5039            |  |
|             | 0.7449   | 0.0189    | 0.2362   | 0.0730        | 0.3780   | 0.5490            |  |
| 318.15      | 0.9755   | 0.0085    | 0.0160   | 0.0021        | 0.9382   | 0.0597            |  |
|             | 0.9426   | 0.0109    | 0.0465   | 0.0133        | 0.8347   | 0.1520            |  |
|             | 0.9095   | 0.0160    | 0.0745   | 0.0233        | 0.7570   | 0.2197            |  |
|             | 0.8791   | 0.0186    | 0.1023   | 0.0237        | 0.6996   | 0.2767            |  |
|             | 0.8536   | 0.0190    | 0.1274   | 0.0252        | 0.6461   | 0.3257            |  |
|             | 0.8249   | 0.0226    | 0.1525   | 0.0383        | 0.6043   | 0.3574            |  |
|             | 0.8023   | 0.0214    | 0.1763   | 0.0401        | 0.5635   | 0.3964            |  |
|             | 0.7780   | 0.0216    | 0.2004   | 0.0411        | 0.5366   | 0.4223            |  |
|             | 0.7588   | 0.0228    | 0.2184   | 0.0439        | 0.4999   | 0.4562            |  |
|             | 0.7415   | 0.0252    | 0.2333   | 0.0607        | 0.4527   | 0.4866            |  |

The Othmer-Tobias correlation (5) was used to ascertain the reliability of the experimental results for each system. The correlation calls for the tie-line data to have the functional relationship

$$\log\left(\frac{1-w_{22}}{w_{22}}\right) = a \,\log\left(\frac{1-w_{11}}{w_{11}}\right) + b \tag{1}$$

where  $w_{11}$ , and  $w_{22}$  are the mass fractions.

The results of regression analysis are presented in Table 4. The values of the coefficient of correlation (r) are close



Figure 1. Effect of temperature on the LLE for the system sulfolane (1) + octane (2) + benzene (3): curves calculated by NRTL; ( $\cdots$ ) 298.15 K, (-) 308.15 K, (--) 318.15 K.



**Figure 2.** Effect of temperature on the LLE for the system sulfolane (1) + octane (2) + toluene (3): curves calculated by NRTL;  $(\cdots)$  298.15 K, (-) 308.15 K, (- -) 318.15 K.

to unity. F-values (F) are sufficiently large, and the estimated standard deviations (S) are very small (6). The goodness of the fit confirms the reliability of the results.

**Data Correlation.** Thermodynamic models, such as the UNIQUAC (7) and NRTL (8) activity coefficient models, are used to correlate the experimental data for these systems.

The objective function (Func) was used to minimize the difference between the experimental and calculated concentrations.

$$\mathbf{Func} = \sum_{i=1}^{n} \min \sum_{j=1}^{3} \sum_{L=1}^{2} [x_{jL} (\mathbf{exptl}, i) - x_{jL} (\mathbf{calcd}, i)]^{2}$$
(2)

 $x_{jL}(\text{exptl}, i)$  is the experimental mole fraction,  $x_{jL}(\text{calcd}, i)$ 



**Figure 3.** Effect of temperature on the LLE for the system sulfolane (1) + octane (2) + *p*-xylene (3): curves calculated by NRTL; ( $\cdots$ ) 298.15 K, (-) 308.15 K, (- -) 318.15 K.

Table 4. Othmer-Tobias correlation for the Systems (a) Sulfolane (1) + Octane (2) + Benzene (3), (b) Sulfolane (1) + Octane (2) + Toluene (3), and (c) Sulfolane (1) + Octane (2) + p-Xylene (3)

| system | T/K    | a      | Ь       | r      | F        | $\boldsymbol{s}$ |
|--------|--------|--------|---------|--------|----------|------------------|
| а      | 298.15 | 0.9113 | -0.0102 | 0.9985 | 1702.14  | 0.0199           |
|        | 308.15 | 0.9409 | 0.1741  | 0.9868 | 186.40   | 0.0853           |
|        | 318.15 | 1.1564 | 0.3521  | 0.9949 | 486.16   | 0.0622           |
| b      | 298.15 | 1.1856 | 0.7119  | 0.9983 | 1425.10  | 0.0319           |
|        | 308.15 | 1.0735 | 0.5983  | 0.9986 | 2552.03  | 0.0236           |
|        | 318.15 | 1.1680 | 0.6721  | 0.9978 | 1320.16  | 0.0333           |
| с      | 298.15 | 1.0091 | 0.7037  | 0.9984 | 158.54   | 0.0141           |
|        | 308.15 | 1.1509 | 0.7579  | 0.9996 | 10047.11 | 0.0131           |
|        | 318.15 | 1.0632 | 0.5707  | 0.9978 | 1877.63  | 0.0265           |
|        |        |        |         |        |          |                  |

is the calculated mole fraction, and n is the number of experimental tie lines.

The values of the parameters that minimized this objective function were sought, using both the UNIQUAC model and the NRTL model. Using the method of Varhegyi and Eon (9), the value of  $U_{11}$  was set, and the values of the five parameters for the UNIQUAC model

$$U_{22}, U_{33}, U_{12}, U_{13}, U_{23} \, (\text{J-mol}^{-1})$$
 (3)

were calculated.

The values of  $g_{11}$ ,  $\alpha_{12}$ ,  $\alpha_{13}$ , and  $\alpha_{23}$  were set and the values of the five parameters for the NRTL model

$$g_{22}, g_{33}, g_{12}, g_{13}, g_{23} (J \cdot mol^{-1})$$
 (4)

for the ternary liquid-liquid system were calculated by using Hook and Jeeves's direct search method (10). The parameters calculated in this way are shown in Tables 5 and 6.

Also included in the tables is the root mean square deviation (RMSD) defined as

$$\text{RMSD} = 100 \left[ \sum_{i=1}^{n} \sum_{j=1}^{3} \sum_{L=1}^{2} \frac{(x_{jL}(\text{extpl},i) - x_{jL}(\text{calcd},i))^2}{6n} \right]^{1/2}$$
(5)

The RMSD is a measure of the agreement between the experimental data and the calculated values.

As can be seen from the tables, the calculation based on both the UNIQUAC and NRTL models gave good representation of the tie-line data for the systems sulfolane + octane + benzene, sulfolane + octane + toluene, and sulfolane + octane + p-xylene. However, the NRTL model, fitted to the experimental data, is more accurate than the UNIQUAC model, as can be seen from the analysis of RMSD, except for the sulfolane +octane + benzene system at 298.15 K.

The calculated values using both the UNIQUAC and NRTL models for the systems at 318.15 K are compared

Table 5. UNIQUAC Parameters  $(U_{ij})$  and Root Mean Square Deviation (RMSD) Values for the Systems (a) Sulfolane (1) + Octane (2) + Benzene (3), (b) Sulfolane (1) + Octane (2) + Toluene (3), and (c) Sulfolane (1) + Octane (2) + p-Xylene (3)

| · Octune (1 |                                                           | (0), (0) Sunon                                                  |                                  |                                                                 | ······································ |                                                                 |                                                                 |                                                           |
|-------------|-----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|
| system      | T/K                                                       | $U_{11}$                                                        | $U_{22}$                         | U <sub>33</sub>                                                 | $U_{12}$                               | $U_{13}$                                                        | $U_{23}$                                                        | RMSD                                                      |
| a           | $\begin{array}{c} 298.15 \\ 308.15 \\ 318.15 \end{array}$ | 4183.995<br>4183.995<br>4183.995                                | 6758.199<br>6837.063<br>6820.967 | 8516.757<br>4780.060<br>4776.206                                | 7761.592<br>7925.650<br>7831.782       | $\begin{array}{r} 4938.211 \\ 4882.271 \\ 4882.258 \end{array}$ | 6166.527<br>6059.095<br>5990.774                                | 0.4376<br>0.8496<br>0.5797                                |
| b           | $\begin{array}{c} 298.15 \\ 308.15 \\ 318.15 \end{array}$ | $\begin{array}{r} 4183.995 \\ 4183.995 \\ 4183.995 \end{array}$ | 6891.614<br>7014.611<br>7030.188 | 4699. 384<br>4893.986<br>4817.051                               | 7748.575<br>7788.784<br>7736.634       | $5082.282 \\ 5057.492 \\ 5055.814$                              | $\begin{array}{c} 6022.054 \\ 6002.448 \\ 6004.908 \end{array}$ | $\begin{array}{c} 0.2428 \\ 0.2488 \\ 0.2778 \end{array}$ |
| с           | $298.15\ 308.15\ 318.15$                                  | $\begin{array}{r} 4183.995 \\ 4183.995 \\ 4183.995 \end{array}$ | 6888.066<br>6828.757<br>6869.192 | $\begin{array}{r} 4896.756 \\ 4884.869 \\ 5052.074 \end{array}$ | 8092.470<br>7896.120<br>7791.390       | 5076.542<br>5085.529<br>5066.643                                | 5955.717<br>5964.039<br>5989.887                                | $\begin{array}{c} 0.3743 \\ 0.4290 \\ 0.5399 \end{array}$ |

Table 6. NRTL Parameters  $(g_{ij})$  and Root Mean Square Deviation (RMSD) Values for the Systems (a) Sulfolane (1) + Octane (2) + Benzene (3), (b) Sulfolane (1) + Octane (2) + Toluene (3), and (c) Sulfolane (1) + Octane (2) + p-Xylene (3)

| system | <i>T</i> /K                  | g11                              | <b>g</b> 22                                                     | <b>g</b> 33                                                        | <b>g</b> 12                                                        | <b>g</b> 13                                                        | <b>g</b> 23                                                        | $\alpha_{12}$     | α <sub>13</sub>                                  | $\alpha_{23}$       | RMSD                                                      |
|--------|------------------------------|----------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------|--------------------------------------------------|---------------------|-----------------------------------------------------------|
| а      | $298.15 \\ 308.15 \\ 318.15$ | 4183.995<br>4183.995<br>4183.995 | $\begin{array}{r} 4022.410 \\ 4239.525 \\ 4415.149 \end{array}$ | $\begin{array}{c} 15685.209 \\ 14295.273 \\ 14235.772 \end{array}$ | $13901.785 \\ 14674.422 \\ 14569.551$                              | $\begin{array}{c} 11245.237 \\ 11393.342 \\ 11568.965 \end{array}$ | $\begin{array}{c} 11151.222 \\ 10595.588 \\ 10595.031 \end{array}$ | 0.3<br>0.3<br>0.3 | 0.2<br>0.2<br>0.2                                | $0.2 \\ 0.2 \\ 0.2$ | $\begin{array}{c} 0.5917 \\ 0.8460 \\ 0.5394 \end{array}$ |
| b      | $298.15 \\ 308.15 \\ 318.15$ | 4183.995<br>4183.995<br>4183.995 | 3310.089<br>3458.751<br>3431.334                                | $9707.539 \\ 11545.802 \\ 10452.085$                               | $\begin{array}{c} 14689.757 \\ 14493.423 \\ 13793.637 \end{array}$ | 9624.478<br>9815.691<br>9712.434                                   | 7523.037<br>7354.631<br>7403.371                                   | 0.3<br>0.3<br>0.3 | 0.2<br>0.2<br>0.2                                | 0.2<br>0.2<br>0.2   | $\begin{array}{c} 0.2227 \\ 0.2414 \\ 0.2458 \end{array}$ |
| с      | 298.15<br>308.15<br>318.15   | 4183.995<br>4183.995<br>4183.995 | 4996.803<br>5161.929<br>5044.773                                | $9820.448 \\9506.506 \\10156.561$                                  | $17432.228 \\ 15688.686 \\ 15003.435$                              | $9420.793 \\9311.436 \\9174.682$                                   | 7160.854<br>7303.386<br>7308.503                                   | 0.3<br>0.3<br>0.3 | $\begin{array}{c} 0.2 \\ 0.2 \\ 0.2 \end{array}$ | $0.2 \\ 0.2 \\ 0.2$ | $\begin{array}{c} 0.2847 \\ 0.2694 \\ 0.3390 \end{array}$ |



**Figure 4.** LLE data for the system sulfolane (1) + octane (2) + benzene(3) at 318.15 K: curves calculated by (- - -) UNIQUAC model, (--) NRTL model; experimental tie line  $(\Delta \cdot \cdot \Delta)$ .



**Figure 5.** LLE data for the system sulfolane (1) + octane (2) + toluene (3) at 318.15 K: curves calculated by (- - -) UNIQUAC model, (--) NRTL model; experimental tie line ( $\bigcirc \cdot \bullet \bigcirc$ ).

with the experimental data in Figures 4-6. As shown in the figures, the size of the two-phase region calculated by the NRTL model tends to be larger than that by theUNI-QUAC model. The effect is clearly noticeable near the plait point; the data at other temperatures have the same tendencies. The plait-point concentrations estimated from the UNIQUAC and NRTL models are presented in Table 7.

## Conclusions

LLE data for the ternary systems sulfolane (1) + octane (2) + benzene (3), sulfolane (1) + octane (2) + toluene (3), and sulfolane (1) + octane (2) + *p*-xylene (3) were determined at 298.15, 308.15, and 318.15 K.



**Figure 6.** LLE data for the system sulfolane (1) + octane (2) + *p*-xylene (3) at 318.15 K: curves calculated by (- - -) UNIQUAC model, (-) NRTL model; experimental tie line (- + -).

Table 7. Plait-Point Mole Fraction  $x_i$  for the Systems (a) Sulfolane (1) + Octane (2) + Benzene (3), (b) Sulfolane (1) + Octane (2) + Toluene (3) and (c) Sulfolane (1) + Octane (2) + p-Xylene (3), Estimated from the UNIQUAC and NRTL Models

|        |                | UNI    | QUAC n | nodel      | N      | lel    |            |
|--------|----------------|--------|--------|------------|--------|--------|------------|
| system | $T/\mathbf{K}$ | $x_1$  | $x_2$  | <b>x</b> 3 | $x_1$  | $x_2$  | <i>x</i> 3 |
| a      | 298.15         | 0.1489 | 0.1525 | 0.6986     | 0.1221 | 0.1189 | 0.7590     |
|        | 308.15         | 0.1897 | 0.1175 | 0.6928     | 0.1643 | 0.0945 | 0.7412     |
|        | 318.15         | 0.2049 | 0.1194 | 0.6757     | 0.1818 | 0.0884 | 0.7298     |
| b      | 298.15         | 0.3302 | 0.0616 | 0.6082     | 0.3187 | 0.0351 | 0.6462     |
|        | 308.15         | 0.2940 | 0.0926 | 0.6134     | 0.2474 | 0.0862 | 0.6664     |
|        | 318.15         | 0.3098 | 0.0948 | 0.5954     | 0.2864 | 0.0736 | 0.6400     |
| с      | 298.15         | 0.3526 | 0.0647 | 0.5827     | 0.3076 | 0.0592 | 0.6332     |
|        | 308.15         | 0.3633 | 0.0730 | 0.5637     | 0.3200 | 0.0654 | 0.6146     |
|        | 318.15         | 0.3291 | 0.1118 | 0.5591     | 0.2930 | 0.1102 | 0.5968     |
|        |                |        |        |            |        |        |            |

The Othmer-Tobias correlation was used to ascertain the reliability of the experimental data. The good fitting confirms the reliability of the data.

The calculation based on both the UNIQUAC and NRTL models gave good representation of the tie-line data for the systems sulfolane + octane + benzene, sulfolane + octane + toluene, and sulfolane + octane + p-xylene. However, the calculated values based on the NRTL model are found to be better than the ones based on the UNIQUAC model.

The binodal curves calculated by the NRTL model for each system were drawn to investigate the temperature dependence. The size of the two-phase region decreased with an increase in temperature.

#### Literature Cited

- Sørensen, J. M. Correlation of Liquid-Liquid Equilibrium Data. Ph.D. Dissertation, Instituttet for Kemiteknik, Danmarks Tekmiske Hojskole, Lyngby, Denmark, 1980.
   Sørensen, J. M.; Arlt,W. Liquid-Liquid Equilibrium Data Col-
- (2) Sørensen, J. M.; Arlt,W. Liquid-Liquid Equilibrium Data Collection; Chemistry Data Series; DECHEMA: Frankfurt, 1979– 1980; Vol. 5.
- (3) Choi, J. S.; Rhim, J. N. Ternary Liquid-Liquid Equilibria of Water, Acetone, and Solvents. Int. Chem. Eng. 1988, 28, 698-706.
- (4) Awwad, A. M.; Salman, M. A.; Hassan, F. A. Liquid-Liquid Equilibria for the Ternary Systems,  $\gamma$ -Butyrolactone-n-Heptane-

Benzene,  $\gamma$ -Butyrolactone-n-Heptane-Toluene, and  $\gamma$ -Butyrolac-tone-n-Heptane-p-Xylene. J. Chem. Eng. Data 1988, 33, 263-265.
 Othmer, D. F.; Tobias, P. E. Tie Line Correlation. Ind. Eng. Chem.

- (5) Othmer, D. F.; Ioblas, F. E. He Line Correlation. Ind. Eng. Chem. 1942, 34, 693-700.
  (6) Box, G. E. R.; Hunter, W. G.; Hunter, J. S. Statistics for Experimenters; Wiley: New York, 1978; Chapter 14.
  (7) Anderson, T. F.; Prausnitz, J. M. Application of the UNIQUAC Equation to Calculation of Multicomponent Phase Equilibria. Ind. Eng. Chem. Process Des. Dev. 1978, 17, 552-556.
  (8) Renon, H.; Prausnitz, J. M. Local Compositions in the thermodynamic Excess Functions for Liquid Mixtures. AIChE J. 1968.
- dynamic Excess Functions for Liquid Mixtures. AIChE J. 1968, 14, 135-144.
- (9) Varhegyi, G.; Eon, C. H. Calculation of the Free Energy Equation Parameters from Ternary Liquid-Liquid Equilibrium Data. Ind. Eng. Chem. Fundam. 1977, 16, 182-185.
- (10) Hooke, R.; Jeeves, T. A. Direct Seach Solution of Numerical and Statiscal problems. J. Assoc. Comput. Mach. 1961, 8, 212-229.

Received for review September 23, 1994. Accepted December 7, 1994. $^{\otimes}$ 

### JE9402000

<sup>®</sup> Abstract published in Advance ACS Abstracts, January 15, 1995.